Gamma-Ray Bursts and "V"s of the big data

Alexei Pozanenko

Space Research Institute (IKI), Moscow

BRICS Astronomy Workshop 2016, Ekaterinburg, September 5-7, 2016

Gamma-Ray Bursts

Outline

- GRB overview
- Observations
- Possible cooperation
- "V"s of the GRBs

Records of GRB astrophysical profile

- The brightest event on the sky in gammarays during short time (down to a few ms.)
- One of most distant observed sources (current maximal redshift z=9.4)
- EM energy release (if isotropic) <~10⁵⁴ ergs per a few seconds
- Energy emission range: from radio up to ~100 GeV (more than 15 orders!)
- Unsolved puzzle since discovery in 1967

Vela satellites (1967-1975): monitoring from space for ground based nuclear tests

Открытие гамма-всплесков: первая публикация и первый всплеск

THE ASTROPHYSICAL JOURNAL, 182:L85-L88, 1973 June 1 © 1973. The American Astronomical Society. All rights reserved. Printed in U.S.A.

OBSERVATIONS OF GAMMA-RAY BURSTS OF COSMIC ORIGIN

RAY W. KLEBESADEL, IAN B. STRONG, AND ROY A. OLSON

University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico Received 1973 March 16; revised 1973 April 2

ABSTRACT

Sixteen short bursts of photons in the energy range 0.2-1.5 MeV have been observed between 1969 July and 1972 July using widely separated spacecraft. Burst durations ranged from less than 0.1 s to ~ 30 s, and time-integrated flux densities from $\sim 10^{-5}$ ergs cm⁻² to $\sim 2 \times 10^{-4}$ ergs cm⁻² in the energy range given. Significant time structure within bursts was observed. Directional information eliminates the Earth and Sun as sources.

1967 07 02 (UT) 14:19 Vela 3, Vela 4

GRB

- A few facts from GRB life
 Time profile of prompt emission
 Short and Long GRB
 Afterglow
- EE
- Periodicity, QPO or nothing
- Aperiodic properties
- Spectral variability, spectral lag

GRB time profile (light curve of prompt = *active phase*) A wide diversity of duration, shape and variability There is no two identical time profiles

GRB light curve in optic

GRB

- A few facts from GRB life
- Time profile of prompt emission
- Short and Long GRB

Afterglow

- EE
- Periodicity, QPO or nothing
- Aperiodic properties
- Spectral variability, spectral lag

BATSE GRB T_90 (Duration of the prompt emission in gamma-rays)

GRB

A few facts from GRB life

Time profile of prompt emission Short and Long GRB

Afterglow

- EE
- Periodicity, QPO or nothing
- Aperiodic properties
- Spectral variability, spectral lag

Orphan burst (no γ-ray emission)

Afterglow (=passive phase) of GRB 130427A (Perley+ 2014) from radio to GeV

GRB/SN connections: bump in the light curve

GRB 130702 / SN 2013dx

GRB 150818A / SN name?

GRB/SN connections: GRB 030329 spectroscopy similarity of SN spectrum

Observations in FSU

IKI/ISON follow up network is one of the two networks in Russia

raphy of GRB in FSII VT-40/500 (ISON) Shajn, 2.6m 2006 Mondy 2005 Ussuriysk 2001 CrAO AZT-22, 1.5m A SAO 2003 Terskol Maidanak 2005 AZT-33IK, 1.6m

Zeiss-2000

Ussuriisk, Far East (Russia)

43.69917° N, 132.16583° E, 200 m

Zeiss-400

Beta-Ori (D=22cm)

Mondy, East Siberia

51° 37' 18.10" N, 100° 55' 07.65" Е, 2000 м

AZT-33IK (D= 1.6 m)

Mt. Terskol, North Caucasus

43.27631° N, 42.49939° E, 3126 m

Zeiss -2000 (2.0 m)

Tien Shan, Kazakhstan

43°03'29" N 76°58'17" E Zeiss-1000 (1.0 m), TSHAO

AZT-20 (1.5 m), Assy-Turgen

CrAO, Crimea

44.72785° N, 34.01567° E, 595 m

Shajn (2.6 m)

AZT-11 (1.25 m)

ISON and IKI follow up network

Telescopes of the network

Site	Telescope	Aperture, m	~ Num. of clear night hours/year
Mil'kovo	ORI-22	0.22 (f/2.45)	n/a
Siding Spring	AstroPhysics V2	0.4 (f/2.4)	n/a
Ussuriysk	ORI-65	0.65 (f/2)	900
Blagoveshchensk	ORI-22	0.22 (f/2.45)	1600
Hureltogot	ORI-40	0.4 (f/2.3)	1400
Mondy	AZT-33IK	1.6 (f/18.75)	1570
Tian Shan	Zeiss-1000 East	1.0 (f/6.7)	n/a
Maidanak	AZT-22	1.5 (f/7.7)	2200
Kitab	ORI-40	0.4 (f/2.3)	1650
Abastumani	AS-32	0.7 (f/3)	1400
Kislovodsk	SANTEL-400A	0.4 (f/3)	1343
Terskol	Zeiss-2000	2.0 (f/3.15)	1200
Terskol	K-800	0.8 (f/2.9)	1200
Krasnodar	Astrosib RC-508	0.51 (f/6.3)	1200
Crimea	ZTSh	2.6 (f/3.8)	1400
New Mexico	Centurion-18	0.45 (f/2.8)	1800

Cooperation within BRICS initiatives?

What we can provide

- Follow up photometric observations of dedicated transient targets (TOO) with 1.0
 2.6 m telescopes
- Secondary photometric standards in the FOV
- Data reduction and photometry
- Multicolor calibration of photometry of different observatories

What we would like cooperate

- Follow up photometric observations with available telescopes of GRB afterglow and transient targets (TOO)
- NIR photometry
- Spectroscopy observations of transients and host galaxies

Four "V"s of the GRBs

- Volume
- Variety
- Veracity
- Velocity

Volume I

- Before GW detection
- Optical follow up GRB localization (3 arcmin, radius) and 3 – 30 days of observations ~ tens Gbytes

Volume II

- After GW detection
- Optical follow up GW localization (600 deg²) and 3 30 days of observations ~ tens Tbytes

LIGO GW150914 localization and coverage (Abbott+, 2016)

Variety

- Gamma-ray, X-ray, GeV, optic, radio, gravitational wave, neutrino
- Even optic data is not homogenous
- Not homogenous by nature: time series (gamma, X-ray, GW), time tagged events (GeV, neutrino), images (optic, x-ray, gamma) etc

Velocity I

Information about Gamma-Ray Burst is distributed in real-time worldwide via GCN. Short messages are received in several seconds after the event trigger and contain preliminary position of the event with an accuracy of $3' - 10^\circ$. This allows to provide quick search and follow-up of GRB optical and radio counterparts with ground-based telescopes.

Velocity II

0.01-100 s 0.01 d 2d 10d 100d

Velocity III

(near) Real time large volume data should be analyzed

Veracity

- Cross identification of sources (gamma, radio, optic, GW)
- Cross calibration
- SN, host observations

Thank you Questions are welcome!