BRICS Astronomy Workshop 2016

Astronomical Data and Computation

Prospects of 21cm Cosmology

Xuelei Chen

National Astronomical Observatories, Chinese Academy of Sciences

Ural Federal University in Ekaterinburg, Russia, 2016.09.07

Astronomical Facilities of China

Neutral Hydrogen (HI) in the universe

coutesy B.E. Robertson et al., Nature

- interstellar medium
- nearby galaxies, kinematics (dark matter, Tully-Fisher relation determined distance), gas accretion
- large scale structure
- epoch of reionization

Epoch of Reionization (EoR)

post-EoR

dark age

21cm Cosmology

Figure inspired by Yi Mao & Max Tegmark

Baryon Acoustic Oscillation

Hubble expansion rate H(z)angular diameter distance $d_A(z)$

Redshift Distortion and Growth of Structure

 $P^{s}(\mathbf{k}) = P(\mathbf{k})[1 + 2\mu^{2}\beta^{2} + \mu^{4}\beta^{2}]G\left[\frac{k^{2}\mu^{2}\sigma_{v}^{2}}{H^{2}(z)}\right],$

The ultimate cosmic information: Large Scale Structure

inflation quantum fluctuations due to uncertainty principle

> large scale structure probed by neutral hydrogen

primordial fluctuations, CMB anisotropy

Galaxy Survey & Intensity Mapping

Advantage of 21cm for intensity mapping

Y. Gong et al. (ApJL 2011)

Intensity mapping may be contaminated by different spectral lines:

 $(1+z_1)\lambda_1 = (1+z_2)\lambda_2.$

The low frequency 21cm does not have significant contaminants, we considered OH 18cm line. In such contamination, incoherent superposition (power spectra adds)

Thompson, Moran & Swenson (2001)

Chemical Name	Chemical Formula	Transition	Frequency (GHz)
Deuterium	D	${}^2S_{\frac{1}{2}}, F = \frac{3}{2} \rightarrow \frac{1}{2}$	0.327
Hydrogen	HI	${}^2S_{1}^2, F=1 \rightarrow 0$	1.420
Hydroxyl radical	ОН	${}^{2}\Pi_{\frac{3}{2}}^{2}, J = \frac{3}{2}, F = 1 \rightarrow 2$	1.612 ^a
Hydroxyl radical	он	${}^{2}\Pi_{\frac{3}{2}}^{2}, J = \frac{3}{2}, F = 1 \rightarrow 1$	1.665 ^a
Hydroxyl radical	ОН	${}^{2}\Pi_{\frac{3}{2}}^{2}, J = \frac{3}{2}, F = 2 \rightarrow 2$	1.667 ^a
Hydroxyl radical	OH	${}^{2}\Pi_{\frac{3}{2}}, J = \frac{3}{2}, F = 2 \rightarrow 1$	1.721ª
Methyladyne	СН	${}^{2}\Pi_{1}^{2}, J = \frac{1}{2}, F = 1 \rightarrow 1$	3.335
Hydroxyl radical	ОН	${}^{2}\Pi_{1}^{2}, J = \bar{\frac{1}{2}}, F = 1 \rightarrow 0$	4.766 ^a
Formaldehyde Hydroxyl radical	Н2CO ОН	$1_{10}^2 - 1_{11}$, six F transitions $2\Pi_{3}, J = \frac{5}{2}, F = 3 \rightarrow 3$	4.830 6.035 ^a
Methanol Helium	CH ₃ OH ³ He ⁺	$5_1 \xrightarrow{2} 6_0 A^+$ ${}^2S_1, F = 1 \rightarrow 0$	6.668 ^a 8.665
Methanol Formaldehyde	CH3OH H2CO	$2_0 \xrightarrow{2} 3_{-1}E$ $2_{11} \rightarrow 2_{12}, \text{ four } F \text{ transitions}$	12.179 ^a 14.488
Cyclopropenylidene	C ₃ H ₂	$l_{10} \rightarrow l_{01}$	18.343
Water	H ₂ O	$6_{16} \rightarrow 5_{23}$, five F transitions	22.235"
Ammonia	NH ₃	$1, 1 \rightarrow 1, 1, eighteen F transitions$	23.694
Ammonia	NH ₃	$2, 2 \rightarrow 2, 2,$ seven F transitions	23.723
Ammonia	NH3	$3, 3 \rightarrow 3, 3$, seven F transitions	23.870
Methanol	CH3OH	$\mathbf{o}_2 \rightarrow \mathbf{o}_1, E$	25.018
Silicon monoxide	SIO	$v = 2, J = 1 \to 0$	42.8214
Silicon monoxide	SiO	$v = 1, J = 1 \rightarrow 0$	43.12

TABLE 1.1 Some Important Radio Lines

$$\bar{I}_{\rm OH}(z) = f_{\rm OH} \int_{M_{\rm min}}^{M_{\rm max}} dM \frac{dn}{dM} f_{\rm IR}(M) \frac{L_{\rm OH}(M,z)}{4\pi D_L^2} y(z) D_A^2$$

OH – IR relation (Darling & Giovanelli 2002):

 $\log L_{\rm OH} = (1.2 \pm 0.1) \log L_{\rm IR} - (11.7 \pm 1.2).$

IR-SFR relation (Magnelli et al. 2011) $L_{\rm IR} [L_{\odot}] = 5.8 \times 10^9 \text{ SFR } [M_{\odot} \text{yr}^{-1}].$

Using SKA sky simulation model to obtain halo and SFR(Obreschkow et al. 2009)

The OH power is several orders of magnitude smaller than the 21cm power, so the contamination is insignificant

Some EoR 21cm experiments

Some 21cm Intensity Maping Experiments

Big Telescopes

Intensity Mapping Arrays

Drift Scan Cylinders (Peterson & Pen):

instant field of view

Tianlai pathfinder experiment

- A small pathfinder experiment to check the basic principles and designs, find out potential problems
- 3x15x40m cylinders, 96 dual polarization receiver units
- observe 700-800MHz, can be tuned in 600-1420MHz
- If successful: expand to full scale 120mx120m, 2500 units

Another Idea: Array of Dishes

Dishes are better understood and have smaller sidelobes

needs adjusting baseline for different declination

less responsive to large scale modes

Site Arrangement

Receiver and Correlator

Experiment of Cylinder array

phase for channel ch9-25

phase for channel ch9-25

Cylinder Array simulation

primary beam

irregular1 cylinder

80

60

40

20

0

-20

-40

-60

-80

-4 -2 0 2 4

Performance Forecast

21CMA

- project lead by Prof. Xiang-Ping Wu
- 81 pods along two arms (6km+4km), 10287 antenna (25,000m²), 50-200MHz

Some results

Q. Zheng et al., arxiv:1602.06624

Five hundred meter Aperture Spherical Telescope (FAST)

Expected Results for FAST

Effective Volume

 $V_{eff}(\vec{k}) = \int d^3r \left[\frac{n_{eff}(r)W(k)P(k)}{n_{eff}(r)W(k)P(k) + 1} \right]^2$

Forecast on Dark Eenergy Equation of State

Probing the Dark Age with Global Spectrum

DARE experiment

SCI-HI experiment

Chinese Chang'e 4 program

SKA

- SKA SWG Cosmology Group wiki http://skacosmology.pbworks.com
- HI galaxy survey
- HI Intensity Mapping
- Radio Continuum Survey
- Weak Lensing Survey

	All sky (10,000hr)	1000 deg² (10,000hr)	10 deg² (1,000hr)
SKA-low		HI intensity mapping survey	
SKA-mid B1	HI IM		
SKA-mid B2	HI IM+Gal, Continuum+WL	Weak Lensing	Weak Lensing Calibration

BAO scales probed by SKA1 dish versus interferometer

The challenge: strong foreground

raw signal to noise ration (SNR) \sim 10⁻⁵

removable: foreground smooth in spectrum X asiou + 32.45 32.4 32.35 Foregr 32.3 32.5 [M] 32.45 [M] 32.4 [W] 32.35 [M] 32.35 32.45 32.3 32.3 10 32.25 0.04 signal and Residual [K] 0.02 -0.02 Recovered -0.04 ν[MHz]^{155.5} 154.5 155 156

Wang et al. (2006)

V. Jelic et al. (2010)

Apparent Foregrounds (Non-smooth)

Foreground Principal Components

 $C = TT^{\dagger}$

 $Cv_i = \lambda_i v_i$

GBT intensity Mapping Data

Foreground Subtraction

GBT 15hr field, cleaned, beam convolved (800.4 MHz, z = 0.775)

cross correlation with WiggleZ (Masui et al 2013) $\begin{array}{c}
1 \\
0.1 \\
0.01 \\
0.001 \\
0.001 \\
0.001 \\
0.1 \\
k (h Mpc^{-1})
\end{array}$

auto correlation (Switzer et al. 2013)

Science Data Processing (SDP)

Jongerius et al.

Need very sophisticated and science-dependent processing, to be improved iteratively over time

remove of bright source

Gridding with W-projection:

$$V(u, v, w) = \int I(\ell, m) G(\ell, m, w) \ e^{-2\pi i [u\ell + vm]} d\ell dm$$
$$G(\ell, m, w) = \frac{e^{-2\pi i [w(\sqrt{1 - \ell^2 - m^2} - 1)]}}{\sqrt{1 - \ell^2 - m^2}}$$

Off-Site (Science) Data Processing

X X

Dillon et al. 2012, 2015

BRICS Project:

21cm Cosmology and Large Scale Structure

X. Chen, Y. Mao, Y. Gong, Y. Xu (NAOC & Tsinghua U.)

T. R. Choudhury, N. Gupta, K. K. Datta, T.G.Sardar (NCRA, IUCAA, Presidency U. Kolkata, BITS)

A. Ivanchik, S. Balashev, D. Varshalovich, V. Klimenko (Ioffe Physical Technical Institute)

Y. Z. Ma, M. Santos, R. Dave, K. Moodley, J. Sievers (UKZN & UWC)

Thanks!

