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Deep Learning



Deep Learning
Deep Learning almost always refers to Deep Artificial Neural
Networks.

Credits to DeepLearning.net
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Convolutional Neural Networks

Convolutional Neural Networks is a generic model for Image
Processing.
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Why deep?
Each successive layer extracts more abstract representation of
data.

Layer 1:

Layer 2:

Visualization of filters (faces). Figures from [Lee et al., 2009].
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Why deep?
Layer 3:

Layer 4:

Visualization of filters (faces). Figures from [Lee et al., 2009].
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Why deep?
Layer 3:

Layer 4:

Visualization of filters (chairs). Figures from [Lee et al., 2009].
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Autoencoders (PCA)

Credits to Quoc V. Le.
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Convolutional AutoEncoder

Figure from [Masci et al., 2011].

Borisyak et al. 11



CRAYFIS experiment



CRAYFIS experiment

Cosmic RAYs Found In
Smartphones experiment
proposes usage of private
phones for observing Ultra-High
Energy Cosmic Rays.

Air Shower image by J. Oehlschläger and R. Engel, Institut für Kernphysik, Forschungszentrum Karlsruhe. 13
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An event example
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Examples

Images above have size 40 × 40 pixels. 16



CRAYFIS experiment

Data Science In
CRAYFIS



Usual Data Science workflow
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HEP Data Science workflow
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CRAYFIS workflow
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CRAYFIS experiment

Track detection



Data

Specially for this trick, two sets of
images,𝐷1 and𝐷2 were collected:

› the same phone

› under the same conditions

› was exposed to 2 radioactive
sources:

› Cobalt 60;
› Radium 226.
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Labeling problem

noise ? a track
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Track detection
Assumptions:

𝑃(noise ∣ 𝑋, 𝐷1) ≊ 𝑃(noise ∣ 𝑋, 𝐷2);
𝑃 (track ∣ 𝑋, 𝐷1) ≊ 𝑃(track ∣ 𝑋, 𝐷2);

𝑃 (track ∣ 𝐷1) ≫ 𝑃(track ∣ 𝐷2);
𝑃 (track ∣ 𝑋) = 1 or 𝑃(track ∣ 𝑋) = 0

A classifier that recovers

𝑓(𝑋) ≈ 𝑃(𝐷1 ∣ 𝑋)

can be turned into

𝑔(𝑋) ≈ 𝑃(track ∣ 𝑋)
Relation 𝑃(𝐴) ≊ 𝑃(𝐵) means that our classifier (model) can not distinguish 𝐴 from 𝐵. 24



Labeling problem solved

f(x) 0.5 0.5 0.83
label noise noise a particle
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CRAYFIS experiment

Reverse engineering of
readout



Smartphones simulation

Monte-Carlo simulation of smartphone's camera is complicated.

Problems:

› exact structure of camera is usually unknown;

› variety of different models;

› the readout process is complex.

…nevertheless …
Simulation of particle interaction with grid of CMOS cells is
feasible.
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Real data and simulation comparison

simulation real data
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Smartphones simulation

[ CMOS-particle
interaction

]+ [ readout ] = [ real
data

]

⎡⎢
⎣

simulation of
CMOS-particle

interation

⎤⎥
⎦
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Smartphones simulation

[ CMOS-particle
interaction

]+ [ readout ] = [ real
data

]

⎡⎢
⎣

simulation of
CMOS-particle

interation

⎤⎥
⎦

+ [ approx.
readout

] = [ realistic
data

]
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Generative Adversarial Networks
GAN is a generative model, capable of generating realistic images
from e.g. Gaussian noise.
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Generative Adversarial Networks
GAN is a game between two networks.

› generator:
ℒ(𝑋𝑟𝑒𝑎𝑙, 𝑋𝑔𝑒𝑛) → max

› discriminator:
ℒ(𝑋𝑟𝑒𝑎𝑙, 𝑋𝑔𝑒𝑛) → min
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Transformation Adversarial Networks
› generator:

ℒ(𝑋real, 𝑋gen) → max

› discriminator:
ℒ(𝑋real, 𝑋gen) → min

› constraints:
ℒ0(…) → min
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Training process

epoch 1 epoch 2 epoch 3 original

Samples of real tracks.
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Model testing
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Summary



Summary
Deep Learning:

› high abstractions;
› Convolutional Neural Networks and AutoEncoders;

CRAYFIS experiment:
› search for Ultra-High Energy Cosmic Rays;
› global distributed observatory based on smartphones.

Deep Learning in CRAYFIS:
› Data Science plays key role in natural sciences;
› Deep Learning is extremely powerful tool.

Examples:
› track detection;
› readout simulation.
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Contacts
CRAYFIS experiment

crayfis.io

Maxim Borisyak

mborisyak@hse.ru
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http://crayfis.io
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